

MSc Data Communication Systems

Department of Electronic & Computer
Engineering

Brunel University

Development of a
TCP/IP-to-Serial Protocol

Converter Device

MSc Student:
Panagiotis Kenterlis

Supervisor:

Prof. C. Nomikos
(TEI of Athens)

May 2004

A Dissertation submitted in partial fulfilment of the
requirements for the degree of Master of Science

MSc Data Communication Systems

Department of Electronic & Computer
Engineering

Brunel University

Development of a
TCP/IP-to-Serial Protocol

Converter Device

Student’s name:__________________________

Signature of student:______________

Declaration: I have read and I understand the Department’s
guidelines on plagiarism and cheating, and I certify that this
submission fully complies with these guidelines.

A b s t r ac t

The prominence of the Internet and networked computing has driven

research efforts into providing support for heterogeneous computing platforms.

Thoughts arise of using the current network infrastructure to increase the

functionality of legacy devices or reuse obsolete systems.

Most such systems are equipped with a communications port, more often the

standard RS-232 serial port. An attempt to use such systems over a computer

network could be successful with the use of a communication device, which

enables the data normally transferred through the serial port to travel over the

network. This requires utilization of the existing transfer protocols on modern

computer networks.

Aim of this specific project is the study, design, and development of a

complete telemetric system that will transfer the data acquired by a field station

to a central station. Objective of this project is to achieve error free

transmission of data and real time communication using established TCP/IP

network infrastructure.

This report will discuss the steps followed for the design and development of

a TCP/IP-to-RS232 protocol interface device.

A c k n o w led g em e n t s

At this point, I would like to thank a number of people without the help of

who I would not have been finish this course.

First, I would like to thank my parents for their psychological and financial

support through these demanding years of my life. Secondly, the supervisor of

this project, Prof. C. Nomikos for his trust and the very interesting project that I

was assigned. Third, Mr. Grigoris Koulouras, a PhD student under supervision

by Prof. Nomikos, for his most valuable help in defining the specifications of this

project and providing me with information on the protocols to implement.

Finally yet importantly, I would like to thank Mr. John Ellinas and Mr.

Panagiotis Drosinopoulos, both of them professors during my undergraduate

studies at the Technological Education Institute of Piraeus in Greece and now

my associates, for their cooperation, trust, and support for the last four years.

C o n t en t s

1. INTRODUCTION 1-1

2. PROJECT BACKGROUND 1-4

2.1. PROJECT AIMS AND OBJECTIVES 1-6

2.1.1. AIMS 1-6

2.1.2. OBJECTIVES 1-7

3. PROJECT EVOLUTION 2-8

4. PROJECT SPECIFICATIONS 3-11

4.1. JUSTIFICATION OF COMPONENT SELECTIONS 3-14

4.1.1. THE MICROCONTROLLER 3-14

4.1.2. THE TCP/IP STACK 3-19

5. PROJECT DESIGN 4-24

5.1. HARDWARE DESIGN 4-24

5.2. SOFTWARE DESIGN 4-26

5.2.1. DEVELOPMENT TOOLS USED 4-26

5.2.2. MICROCONTROLLER FIRMWARE CODE EXPLAINED 4-32

5.2.3. COMMUNICATION CONTROL PROTOCOL 4-36

6. TESTING AND DEBUGGING 5-55

6.1.1. SYSTEM DEBUGGING 5-55

6.1.2. SIMULATION OF EXPECTED USE PATTERNS 5-57

6.1.3. IN-FIELD TESTING 5-64

7. CONCLUSIONS 6-65

8. FUTURE WORK 7-66

9. PERSONAL THOUGHTS 8-66

10. PROJECT MANAGEMENT 9-67

11. BIBLIOGRAPHY 10-70

12. REFERENCES & OTHER DOCUMENTS 11-71

12.1. READY-TO-USE SOLUTIONS 11-71

12.2. ARTICLES 11-72

12.3. COMPONENTS 11-74

13. APPENDIX 12-75

L is t o f T a b le s

TABLE 1 PARAMETRIC COMPARISON TABLE FOR AVR ATMEGA MICROCONTROLLERS 3-17

TABLE 2 DEVICE SELECTION WEIGHTS MATRIX ... 3-19

TABLE 3 ANALYSED WEIGHTED SELECTION CRITERIA ... 3-20

TABLE 4 TCP/IP SOLUTIONS... 3-21

TABLE 5 TCP/IP STACK SOLUTION WEIGHTED DECISION MATRIX .. 3-22

L is t o f F ig u r es

FIGURE 1 CURRENT NETWORK TOPOLOGY .. 1-4

FIGURE 2 GEOGRAPHICAL DISTRIBUTION OF FIELD STATIONS (N.O.A. STATIONS)...................................... 1-5

FIGURE 3 NEW NETWORK TOPOLOGY .. 2-9

FIGURE 4 PROTOCOL CONVERTER CONNECTIONS... 2-10

FIGURE 6 DRAFT SYSTEM SCHEMATIC... 3-13

FIGURE 6 ATMEL STK200 STARTER DEVELOPMENT KIT ... 3-15

FIGURE 7 THE IIM7010A MODULE.. 3-23

FIGURE 8 ADDRESS/DATA BUS DE-MULTIPLEXING .. 4-25

FIGURE 9 PROGRAMMER'S NOTEPAD APPLICATION WINDOW .. 4-27

FIGURE 10 TOOLS MENU... 4-27

FIGURE 11 CONFIGURATION OF TOOLS MENU ... 4-28

FIGURE 12 MENU OPTION EDIT WINDOW .. 4-28

FIGURE 13 PONYPROG2000 WORK ENVIRONMENT ... 4-29

FIGURE 14 PONYPROG2000 SETUP OPTIONS FOR STK200 .. 4-30

FIGURE 15 SETTING UP FOR USE WITH THE TARGET MICROCONTROLLER .. 4-31

FIGURE 16 SETTINGS FOR CONFIGURATION AND SECURITY BITS OF THE MICROCONTROLLER 4-31

FIGURE 17 EXPERIMENTAL CONNECTIONS OF THE DEVICE ... 5-56

FIGURE 18 OBTAINING THE DEVICE CONFIGURATION ... 5-56

FIGURE 19 QUERYING THE DNS SERVER THROUGH THE DEVICE .. 5-58

FIGURE 20 WINDUMP TRACE OF DNS QUERY AND RESPONSE .. 5-59

S u m m ar y

The project is concerned with the research, design, and implementation of a

TCP/IP-to-serial port protocol converter in hardware. What is presented in this

report has been a brief analysis into the problem domain and a small window

view on the work that has been performed.

In the first chapter, a brief introduction to the project is attempted and a

background on the idea behind the project is presented.

In the second chapter, background information on the mother project that

this project is part of is presented. Actual details remain hidden since they are

not required in getting the reader acquainted with what this dissertation

contains and in fact, they could puzzle him/her.

In the third chapter, the aims and objectives of this project are laid out to

help the reader understand the motives and practices that will drive this

project.

In the fourth chapter, the currently changing status of the mother project is

presented as an introduction to the requirements that must be considered in

the next chapter.

In the fifth chapter, a specifications list is drawn as a starting point in

defining what guidelines must be followed in this project. Then with these

specifications in mind, the rationale behind the selection of the components to

form the project is explained.

In the sixth chapter, the design aspects of both the hardware and software

of this project are presented: the development tools used, how they were

configured, the protocols that were used and design methods used.

In the seventh chapter, testing and debugging methods and procedures

followed through the duration of the development stage of the project are

analysed. This is an essential part of the project, depicted to provide proof of

operation complying with the specifications set in chapter 5.

In chapters numbered 8 to 10, this project is concluded and comments on

plans and developments for the future are made. Personal thoughts are

presented on the effect this project had on the writer of this dissertation.

Chapter 11 includes brief information on how time was partitioned for this

project and how each task was scheduled to occur.

Bibliography and references used as study material for this project are given

in chapter 12 categorised according to their application area in the project.

The appendix contains all other material that was not possible to place in the

main body of this dissertation and should not be excluded.

 1-1

1 . In t r o d u c t io n

When DARPA (Defense Advanced Research Project Agency) of the

Department of Defense of the United States of America created the first large

network of computer facilities located in various research institutes more than

35 years ago, no one could ever even dream how this project would evolve.

After many breakthroughs in the computer and communications sciences and

industries, the first large network grew up from a few nodes to include tens of

millions connected together to what is now called “The Internet” (Ref. [9]).

The explosive impulse in the growth of the Internet was given by the TCP/IP

protocols suite (Ref. [10]). The Internet Protocol (IP, Ref. [11]) is a network

layer protocol and deals with point-to-point routing of packets and establishes

an unreliable platform for transferring messages that have no interdependence

to each other. The Transfer Control Protocol (TCP, Ref. [12]) is a transport

layer protocol which establishes reliable communication sessions through data

packets called datagrams. These datagrams include information that relates

each datagram to another and data integrity control information. Each node on

the Internet has a unique 32-bit IP address by which it can be identified in the

network and transmit and receive network packets. Each node has

implemented in software internally addressed by TCP a number of data

exchange boxes that are called ports. Each port is identified by a 16bit number

giving a total of 65536 ports. Network applications use ports to listen for data

or send data to another application/node on the network. The combination of

an IP address and a TCP port number is called a socket.

 1-2

Windows and UNIX based operating systems use a basic network-

programming interface that is called the Socket API (Refs. [15] & [16]). In both

operating system worlds, these APIs are very much standardised allowing

applications executing on different systems to talk to each other. The TCP/IP

protocols and the Socket API have allowed system interoperability to become

the greatest driving force of all networks today, either small or large.

In the past decade, a tremendous interest in the electronics industry to

enable new products to connect to the Internet has been observed. Nowadays

one can even find home appliances such as refrigerators and ovens that

connect to the Internet. However, the most important challenge is to refurbish

legacy equipment that has been designed for specific purposes to have network

connectivity (Ref. [8]). The cost of replacing this equipment, such as various

industrial controllers, is prohibitive and in some cases, there is no rationale in

doing so.

Controlling legacy devices over a computer network carries many advantages:

• Share a common wiring infrastructure with telephone and computer

network building wiring.

• Distance between devices can be extended from a few meters to the

other side of the globe.

• Revival of technologies that were being abandoned by limiting its use

on one side of the network interface while replacing the intermediate

protocols with newer ones.

• In the case of computer-operated machinery, a modern powerful

computer by use of concurrent or parallel execution of tasks can

centrally control an entire production line or a factory.

 1-3

In all cases, control and reduced maintenance cost of legacy equipment is

the driving force (Case Study, Ref. [20]).

The most popular communications interface between computers and other

equipment is the serial port. Many standards exist, however the RS-232C (Refs.

[17] & [18]) can be found on all personal computers. Special protocol converter

devices are used to provide these functions (Ref. [19]).

Various connection schemes are possible however, the most popular are:

• Connection between legacy equipment over the network

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX Y Z

TAB

% UTILIZATION

HUB/MAU NIC

2
BNC
4Mb/s

Bay Networks

Figure 1 Device to Device connection over the network

• Connection between legacy equipment and PC over the network

Bay Networks

Figure 2 Device to PC connection over the network

This project shall deal with designing a protocol converter for the latter case.

 1-4

1 .1 . P r o je c t B a c k g r ound

The mission of this project is to redesign from scratch the communication

section of an existing system for optimized functionality. The system currently

used applies telemetry techniques for scientific research. It was developed to

cover the need of collecting seismic data over a leased line network for the

Geodynamic Institute of the National Observatory of Athens. The network

topology appears in Figure 3 below. This is a seismological research project

being run by Professor C. Nomikos, who is also the supervisor for this MSc

project.

 OBSERVATORY

COMPUTER for EMV
data collection MULTIPLEXER

Field station

MODEM

MODEM

MULTIPLEXER

A/D RECEIVER

Seismic Equipment
inputs

EMV Antenna

Seismic data processing

PTT Analogue
Leased Line

Figure 3 Current Network Topology

The overall system consists of eleven field stations scattered throughout the

Greek domain and one controlling station located at the central installations of

the National Observatory of Athens. The field stations are equipped with data

 1-5

acquisition modules measuring variations in the earth’s electromagnetic field

with the aid of sensitive antennae tuned to specific frequency ranges with a

sampling rate of 1 sample/sec. Data acquired is transmitted immediately to the

central station through the use of statistical multiplexers and leased line modem

links. The central station is responsible for gathering the data forwarded by

each field station and stores it locally in a database. From this database,

specially coded programs will parse data and apply scientific processing to

produce results that could prove valuable in the prognosis of seismic activity in

the area where the field stations are located.

Figure 4 Geographical distribution of field stations (N.O.A. Stations)

 1-6

1 .2 . P r o je c t A im s a nd O b je c t iv e s

At the start of the project, some aims and objectives must be set to guide

our steps in working out solutions.

1 .2 .1 . A im s

The aims of this project are to:

1. Satisfy the need for the described interface device for scientific

research;

2. Involve a wide range of expertise from the MSc course modules in the

design, production and formative testing of the proposed system;

3. Build a network interconnection system up to a fully functional level;

4. Demonstrate a practical implementation of communication systems in

action;

5. Comment on architectures and methods used in real-time and data-

critical systems;

6. Gain valuable knowledge on the low-level design and operation of

network systems and protocols as well as on the hardware and

software design of communication systems.

 1-7

1 .2 .2 . O b je c t iv e s

The objectives of this project are to:

1. Become familiar with the practical aspects of data communication

networks;

2. Study the principles of TCP/IP networks and information interchange;

3. Understand the practical issues in dealing with networked systems on

the hardware level;

4. Gain self-confidence, maturity, and self discipline as a member of a

research team and be able to communicate effectively with other co-

workers;

5. Enhance the level of competence in carrying out the learnt knowledge

from the entire MSc course and understand the practical limitation;

6. Extend current knowledge in microcontroller based systems;

7. and be able to develop a commercially realistic application in an

economic and cost effective manner.

 2-8

2 . P r o je c t E v o lu t io n

With hopes of independency from the N.O.A. administration, it is essential

that currently established communication infrastructure is abandoned and other

solutions adopted. All around the globe there is a tremendous change with

classical analogue or digital proprietary telecommunication infrastructures being

replaced by TCP/IP networks. The greatest of such networks is the Internet.

There is a list of advantages in developing a TCP/IP implementation of the

currently working system.

Moving on to a TCP/IP networking solution permits:

1. adaptive flow control without need for operator intervention;

2. adaptive routing of data packets;

3. increased data integrity assurance through the use of Cyclic

Redundancy Checks;

4. lower cost compared to leased lines when data is not time-critical or

there is no need for ‘always-on’ links;

5. use of open protocols over TCP/IP protocol stack;

6. QoS can be guaranteed if paid for at the link provider;

7. IP networks by use of different transmission mediums (telephone

copper wires, optical fibres, mobile & satellite links) are becoming

omni-present.

The proposed network topology is depicted in Figure 5 overleaf.

 2-9

IDC

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX Y Z

TAB

% UTILIZATION

HUB/MAU NIC

2
BNC
4Mb/s

RS CS TR RD TD CDTALK / DATATALK

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX Y Z

TAB

% UTILIZATION

HUB/MAU NIC

2
BNC
4Mb/s

RS CS TR RD TD CDTALK / DATATALK

Figure 5 New network topology

In the proposed network scheme, the obsolete field stations are replaced

with new ones carrying increased intelligence. A PhD student under supervision

of Prof. Nomikos is currently developing a data acquisition and logging system

to be used as part of Prof. Nomikos’ seismic research project. Data acquired will

be stored in some form of digital data storage unit and transmitted to the

central station whenever it is appropriate. In this implementation of the system,

the data logging equipment will be placed at various seismic hot spots across

Greece, where Internet connection will be available by local research or

Technological Education Institutions. This project will concentrate on the

transfer of acquired data from a number of such remote stations over the

Internet to a central processing server.

 Each field station of the new system will be responsible for establishing a

communication channel with the central station in order to transmit collected

data temporarily stored in it for further storage on the central database server.

At leisure time, data will be processed for feature extraction.

 2-10

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX Y Z

TAB

% UTILIZATION

HUB/MAU NIC

2
BNC
4Mb/s

RS CS TR RD TD CDTALK / DATATALK

IDC

Figure 6 Protocol Converter Connections

At the time this project was starting another one was being run in parallel,

for which the TCP/IP connection would be alternatively become available by use

of mobile communication devices such as GPRS modems (General Packet Radio

System). In order to allow a single data logging module to be used in field

stations for both projects, this project needs to be able to handle the same

protocols used by the GPRS module to establish connections and transfer data.

The protocol used in this module incorporates a modified AT command set

(similar to that used in PSTN modems) which supplies all the control logic and

information required to establish a TCP/IP socket connection and transfer data

over the airwaves. In this case, GSM network coverage is required in the

installation area of the field station, which allows the presence of field stations

even on geographical locations unreachable by wire networks.

 3-11

3 . P r o je c t S p e c if ic a t io n s

Though this project started with the intention of designing a “home-made”

solution for the problem in question, research on available solutions in the

market was essential in defining the capabilities and specifications of the device

to build. Devices found available in the international market (Ref. [1]~[7])

appear to be more than fully equipped for use in the system, however none

appears to cover the special needs of it. Cost, power consumption, and

functionality factors are not directly addressed by these devices. Therefore, a

custom solution is undeniably a one-way road to fulfilling requirements for the

project.

The device to be built needs to be able to carry most of the following

recommended specifications:

1. Allow a short development period to meet the deadlines set by the

duration of this MSc course.

2. Low cost implementation to meet small overall budget for the project.

Cost of materials and development tools needs to be considered and

expenses kept at low levels.

3. Incorporate a high-speed serial link to the data acquisition equipment

of the field station using standard baud rates.

4. Make use of well-established widely known communication protocols.

The GPRS modem AT command set needs to be emulated by the device

for increased compatibility between projects and open connectivity of

the field station.

 3-12

5. The software to be developed needs to incorporate “crash” or “hang”

avoidance techniques to provide increased Mean-Time-Between-

Failures (MTBF) and Mean-Time-Between-Repairs (MTBR) figures. This

is a requirement of utter importance, since the field stations will be

installed in remote locations where maintenance crew might be

extremely hard to be present in case of complications with normal

operation of the station.

6. The hardware of the device needs to consume as little power as

possible. This is another requirement pushed by the fact that field

stations will be placed in areas where electric power supply might be

absent or interrupted regularly. Also in the undesired event of seismic

activity, field stations should be self-reliant in respect to electric power

the provision of which cannot be guaranteed. The device is required to

be able to be powered by either batteries or other form of low-

efficiency power sources, such as photovoltaic cells. One way to

enforce this design requirement is to remove any components or

circuits that unnecessarily draw current from the power source. In

addition, every component must be chosen in its low power version.

7. Establish TCP/IP connections through a standard programming

application interface for ease of programming and debugging.

Proprietary solutions must be avoided for reasons of programming

complexity.

 3-13

Summarizing the above from an engineering side of view, the proposed

hardware is to be designed as a microprocessor based system with sufficiently

low power requirements and manufacturing cost. Two connection interfaces

must be available to the user, an Ethernet 10/100Mbps port supporting most

TCP/IP family protocols, and a minimal RS-232 serial port. Transfer of data

must be performed using TCP datagrams in a client-server software model.

Figure 7 Draft System Schematic

 3-14

3 .1 . J u s t if ic a t ion o f C om p one nt S e le c t ions

After having drawn an initial project specifications outline, the technology

behind every suggestion needs to be defined. The following pages describe how

decisions were made towards finding the right parts for the project.

3 .1 .1 . T h e M ic r o c on t r o lle r

For the device to have the intelligence required to fit the purpose of this

project, a data processing unit is required. Using a standard personal computer

processor would add unnecessary interfacing and programming complexity

because of the peripheral components required and their internal structure.

Additionally the development and cost of materials would greatly exceed the

budget. Using a Pentium processor for a system with such low processing

power requirements would be overkill. A smaller and more practical solution is

required and that can only be found in the microcontrollers’ domain.

Choosing the heart and brains of the device could not be an easy task. With

the writer having much experience with 8051 microcontroller derivatives,

deciding to follow another path could prove to be an unnecessary risk.

Nevertheless, expansion of knowledge was a tempting call. Having some years

ago acquired a starter development kit for another microcontroller family, that

of Atmel’s AVR, but never having it put into real use was a hidden desire

begging to come true. The path was now drawn and a suitable target

microcontroller had to be selected.

 3-15

The Atmel STK200 Development Kit

The STK200 is an ideal starter development kit for people trying to grasp

the capabilities of the AVR microcontrollers while building their own

applications using the facilities provided (Ref. [22]).

Figure 8 ATMEL STK200 Starter Development Kit

The STK200 connects to a personal computer using two of its ports. First, a

standard parallel port for the dongle device with which programming of the

microcontroller placed on the board is possible. Secondly, a standard serial

port (RS-232C) which connects the on-chip serial port of the microcontroller

with the personal computer thus allowing exchange of data and control

commands from one end to the other.

The STK200 was originally designed for use with the AT90 series of AVR

microcontrollers; however, it can accommodate any other compatible AVR

microcontroller on DIP40, DIP28, DIP20, and DIP8 IC sockets. The STK200 is

now obsolete and has been replaced by STK500.

 3-16

Specifications list strictly dictated that the system would have to be as power

efficient as possible. For this reason, a low power 3.3V microcontroller

derivative would be required. In addition, to reduce design and implementation

costs, the microcontroller would have to include as many required peripheral

chips with in its package as possible. These mainly involve the program

memory, data memory, and non-volatile data storage (EEPROM) that would

have to be adequately large to accommodate the device’s firmware. Second in

order of importance, but not to be taken lightly, is the presence of an on-chip

UART, which will be used for connection to the serial port of the field station’s

data acquisition equipment. The microcontroller to be used must also come

equipped with enough I/O pins to use as address and data bus and control lines

for external peripherals. The more self-contained the microcontroller and its

firmware the less the external design considerations will be.

Searching on Atmel’s web site for their line of microcontroller products it

became clear that the AT90 product series that the development board was

designed for was becoming obsolete. To avoid future problems the ATmega

series would provide the candidates for the processing hardware position in the

system. Compatible candidates needed to be picked up from a long list of

products. Those falling inside the specifications, which are also available in the

Greek electronics market, are given in Table 1 in the following page.

 3-17

A
Tm

eg
a8

51
5L

8

2.
7-

5.
5

51
2

0.
5 8 35

3 1 1 1 1

PD
IP

40
, T

Q
FP

44

A
Tm

eg
a8

53
5L

8

2.
7-

5.
5

51
2

0.
5 8 32

3 1 1 1 2

PD
IP

40
, T

Q
FP

44

A
Tm

eg
a8

L

8

2.
7-

5.
5

10
24

0.
5 8 23

2 1 1 1 2

PD
IP

28
,

TQ
FP

32
,

M
LF

32

A
Tm

eg
a1

62
L

16

2.
7-

5.
5

10
24

0.
5 8 35

3 2 1 2 2

PD
IP

40
,

TQ
FP

44

A
Tm

eg
a1

6L

16

2.
7-

5.
5

10
24

0.
5 8 32

3 1 1 1 2

PD
IP

40
,

TQ
FP

44

A
Tm

eg
a3

2L

32

2.
7-

5.
5

20
48

1 8 32

3 1 1 1 2

PD
IP

40
,

TQ
FP

44
,

M
LF

44

A
Tm

eg
a6

4L

64

2.
7-

5.
5

40
96

2 8 53

8 2 1 2 2

TQ
FP

64

A
Tm

eg
a1

28
L

12
8

2.
7-

5.
5

40
96

4 8 53

8 2 1 2 2

TQ
FP

64

D
ev

ic
e

Fl
as

h
(K

by
te

s)

Vc
c

(V
)

SR
A

M
 (b

yt
es

)

EE
PR

O
M

 (K
by

te
s)

F.
m

ax
 (M

H
z)

M
ax

 I/
O

 P
in

s

Ex
t I

nt
er

ru
pt

s

16
-b

it
Ti

m
er

SP
I

U
A

R
T

8-
bi

t T
im

er

Pa
ck

ag
e

O
pt

io
ns

T
a
b

le
 1

 P
ar

a
m

e
tr

ic
 C

o
m

p
a
ri

so
n

 T
a
b

le
 f

o
r

A
V

R
 A

T
m

e
g

a
 m

ic
ro

co
n

tr
o

ll
er

s

 3-18

From the candidate microcontrollers of Table 1 the one that was originally

chosen because of its full featured configuration was the ATmega8515 (Ref.

[23]). It operates at the range of 2.7-5.5V and comes with sufficiently large

memories for the firmware. It was also one of the only ones found in PDIP40

package, which could be fitted in the STK200 kit.

However, during the code development stage it became clear that the small

program memory of 8Kbytes that the ATmega8515 came with would not suffice

the full application code. Another microcontroller had to be used, one with more

program memory. Looking back on Table 1 and searching once more on the

electronic parts stores, a more viable solution was found. The microcontroller to

replace the ATmega8515 was none other than the ATmega162 (Ref. [24]),

which offers twice the capacity on program, data, and non-volatile memories.

This increase in internal memory would prove invaluable for the execution of

the microcontroller code. With larger data memory, larger communication

buffers can be implemented and more data can be processed immediately. Both

microcontroller devices are compatible at the instruction set level and thus

replacement causes no software disarrangement (Ref. [25]).

 3-19

3 .1 .2 . T h e T C P / IP S t a c k

When considering the computer network portion of the device, it became

clear there were two paths that could be followed: either implement a software

TCP/IP stack or make use of existing hardware TCP/IP stack solutions. Deciding

which path to walk is not an easy task, engineering knowledge and expertise

has been applied. The pros and cons of each path are analysed in the following

pages in the form of weighted decision matrices.

First, it is important to identify the criteria by which the selection will be

justified.

 A B C D E F G De-norm Normalized
Time required for
development A = + = + + + + +5 +10

Additional hardware
components
required

B - = = = = = = -1 +9

Programming
Complexity C = = = + + - - 0 +5

Interfacing
Complexity D - = - = - = - -4 +1

Power
Consumption E - = - + = - - -3 +2

Cost per unit
manufactured F - = + = + = + +2 +7

Development
cost G - = + + + - = +1 +6

Table 2 Device Selection Weights Matrix

Time required for the development of this project is crucial since strict

deadlines have been placed beforehand from the university and must not be

exceeded. Using more hardware components to the project not only adds to the

cost of materials but also increases design complexity and thus requires more

 3-20

money and time. Programming complexity refers to the complexity of the

firmware to be placed on the device. If the firmware is too complex to build, it

will require much development and debugging time. Interfacing complexity

refers to the difficulty in connecting together the components. If originally the

interfacing complexity is high, more hardware or software will be required to

proceed with development. Power consumption as mentioned in the

specifications outline should be kept as low as possible. Cost is also a very

important factor. Some solutions will require financing only at the development

stage, while others will extend expenses on the manufacturing stage as well.

 Weight Description Points
Weighted

Points
Short Time (2-3 weeks) +3 +30

Medium Time (3-4 weeks) +1.5 +15

Time required
for development A

(+10)
Long Time (more than 4 weeks) -2 -20

None +3 +27

1-2 additional components +2 +18

Additional
hardware
components
required

B
(+9)

More than 2 components -1 -9

Short functions +3 +15

Large functions +1 +5

Programming
Complexity C

(+5)
Large functions & Hardware control -3 -15

Parallel Address/Data Bus +5 +5 Interfacing
Complexity

D
(+1) Serial Interface +2.5 +2.5

Up to 10mA +3 +6

Up to 20mA +2 +4

Power
Consumption E

(+2)
Up to 30mA +1 +2

Small +3 +21

Average +2 +14

Cost per unit
manufactured F

(+7)
Large -1 -7

Small +3 +18

Average +2 +12

Development
cost G

(+6)
Large -1 -6

Table 3 Analysed Weighted Selection Criteria

 3-21

Software TCP/IP stack solution is split into two categories. In the first

category we find the TCP/IP software stack that is to be built by the designer of

the project himself. Attempting to do so will require extreme amounts of time to

successfully and fully code the TCP/IP state machine. In addition some external

hardware components and their respective software drivers are required to

interface the device with the Ethernet. These components are not only

expensive and hard to find in the Greek electronics market but also difficult to

place on a board. Implementing a commercial TCP/IP software stack although it

has minimum development time, at a significant price of course, it may require

paying royalties to the stack designer for each device manufactured.

Weight

Home-brew
Software

TCP/IP Stack

Commercial
Software

TCP/IP Stack

Hardware
TCP/IP Stack &
Ethernet Module

A
Extremely Long

Development Time

Short or no development

time

Short or no development

time

B
More than 2 components

for Ethernet PHY

More than 2 components

for Ethernet PHY

None

(already on module)

C

Large functions and

excessive hardware

control

Large functions and

excessive hardware

control

Short functions

(hardware drivers)

D
Parallel Address/Data Bus

(Ethernet PHY)

Parallel Address/Data Bus

(Ethernet PHY)

Parallel Address/Data Bus

(Entire module)

E Estimated up to 10mA Estimated up to 10mA Estimated up to 30-40mA

F

Small or none Depending on royalties

paid to TCP/IP stack

designer

Average to large

depending on the cost of

each module

G Small Average Large

Table 4 TCP/IP Solutions

 3-22

Hardware TCP/IP stack solutions offer minimum development time, without

requiring any external components, since everything required is already

available on a single chip or module. Most hardware solutions come with freely

available driver functions to use with the target system. In this case, the time

required to produce the end application code is brought to a minimum relieving

the designer from tiny details and enabling him/her to deal only with the

important aspects of the application. Advantages offered by use of a hardware

TCP/IP stack solution are countered by increased cost of each device.

Considering the above, the following decision matrix was drawn to weigh

each possible solution and discover which one covers the needs of this project.

 A B C D E F G
Total
Points

Home-brew S/W TCP/IP Stack -20 -9 -15 +5 +6 +21 +18 6

Commercial S/W TCP/IP Stack +30 -9 -15 +5 +6 +14 +12 43

H/W TCP/IP Stack &

Ethernet Module
+30 +27 +15 +5 +2 -7 -6 66

Table 5 TCP/IP Stack Solution Weighted Decision Matrix

As justified from Table 5 above the solution for the TCP/IP stack problem is

to be found in the commercial hardware domain.

After careful and extensive search on the Internet on such hardware

modules (Ref. [21]), the one selected for use is described in the following

pages. Due to lack of space, there can be no comparison between all hardware

TCP/IP stack modules found and only the winning candidate is described. The

reason that led to selecting this component over others is the fact that it

provides limited yet standard communication functionalities at a small cost.

 3-23

The Wiznet IIM7010A module (Ref. [26]) is a combination of a hardwired

TCP/IP stack, a 10/100Mbps Ethernet PHY, an Ethernet MAC Jack, and Rx/Tx

buffer memory. It comes in the form of a self-contained micro-board module as

seen in Figure 9 below.

Figure 9 The IIM7010A Module

Connection to the microcontroller unit is quite easy owing to the full

address/data bus, which allows the module to be connected just like any other

memory or peripheral chip. Its 15bit address bus will require a total address

range of 32Kbytes on the microcontroller’s memory map.

On the communications aspect of the module’s operation there are four

programmable socket channels. These channels can be programmed through a

socket API as in Windows-based personal computer systems. A total of

16Kbytes of dual-port memory is equally split into two regions dedicated for the

communication Tx and Rx buffers respectively. Each of these regions can be

fragmented into pieces of 1, 2, 4 or 8Kbytes depending on the use of socket

channels by the application software. All socket channels can be programmed

for use with TCP, UDP or raw data exchange protocol, over standard IPv4

packets and Ethernet frames in the physical layer.

The most important feature of the IIM7010A module is the freely available

code for rapid application development in microcontroller based systems.

 4-24

4 . P r o je c t D e s ig n

This project can be partitioned into two design areas, the Hardware Design

and Software Design. In this chapter, both partitions will be presented and

analysed as much as possible without reaching into much depth. For more in-

depth information on modules and functions, please consult the datasheets that

are found in the accompanying CD-ROM.

4 .1 . H a r dw a r e D e s ig n

For reasons of low power consumption, the entire device is internally

powered by a 3.3V voltage regulator and all major components and glue logic

circuits have been selected to work at this voltage. The microcontroller is

clocked at 8MHz which is the highest frequency it will work at when powered at

3.3V according to its datasheet.

Glue logic refers to all the small circuits that play an important role in

connecting major components together. The entire glue logic circuit consists of

a single standard CMOS 8bit latch chip (74HC573).

The lower portion of the microcontroller’s address bus is multiplexed with the

8bit data bus and an external latch chip is required to de-multiplex these buses.

The latch is controlled by the ALE signal of the microcontroller, which latches

 4-25

the lower byte of the address word on the chip. After that is done, the I/O lines

serve as data bus.

Figure 10 Address/Data bus de-multiplexing

The IIM7010A module responds to the address range of 0x8000-0xFFFF

(32Kbytes). Normally at this address range the A15 pin of the address bus has

a logic value of ‘1’. Standard address decoding circuits would require that this

pin is inverted and then fed to the /CE input of the chip to enable when any

address value in this range appears on the address bus. However, since the

presence of an inverter gate would require an entire 74HC04 chip that carries 6

inverters there would be too much waste of materials, power, PCB space and

increased cost. The solution given was to completely ignore the A15 line and

connect the /CE input of the IIM7010A module to ground. The module would

then be permanently enabled. This does not constitute a problem to the device

since no other external peripheral chip connects to the address/data bus and no

collisions will be witnessed. Considering the fact that the firmware code makes

no random memory accesses the action of removing a single chip is not to

cause fear. This assumption was also experimentally tested and verified.

 4-26

4 .2 . S o f t w a r e D e s ig n

Though this is by name a hardware project, in reality the software portion of

it is far greater and complex, thus it deserves a fair amount of attention.

4 .2 .1 . D e v e lo p m e n t T o o ls U s e d

For the development of the microcontroller’s resident firmware code, the

AVR-GCC compiler was used. This is a freely available open source C compiler

written specifically for Atmel’s AVR microcontroller family members. AVR-GCC

was chosen among other commercial products primary due to its zero

purchase, installation, and maintenance cost. Though AVR-GCC is publicly

available without a full featured Integrated Development Environment (IDE) as

other commercial products do, there are many freeware IDE applications

available on the Internet that can be customised for use with AVR-GCC. As the

IDE application for the purposes of this project, Programmer’s Notepad was

chosen (not to confuse with Windows Notepad).

The following pages demonstrate how to configure Programmer’s Notepad

IDE for use with the AVR-GCC compiler. See Figure 12 to Figure 14 for the

procedure to add the menu items that allow compiling source files from inside

the Programmer’s Notepad application. This operation requires that a valid

“makefile” file is present in the path where the source files are located on the

local hard disk drive. The makefile file used for this project can be found in the

accompanying Compact Disk and in the appendix.

 4-27

Figure 11 Programmer's Notepad Application Window

Figure 12 Tools Menu

 4-28

From ToolsOptions the following window appears and menu items in the

Tools menu can be created or edited.

Figure 13 Configuration of Tools Menu

Figure 14 Menu Option Edit Window

 4-29

For programming the microcontroller on the STK200 development board the

PonyProg2000 freeware program was used. A capture of the main window of

PonyProg2000 is displayed in Figure 15 below. In the MDI child window of the

applications the contents of the Intel HEX file to be programmed on the

microcontroller are presented in hexadecimal and ASCII form next to the

starting address of the memory location to be written. Using this window,

checking for code consistency with source files in memory locations used by

constant values and interrupt vector tables became possible. Verifying the

programming procedure was available and used to check for device faults or

programming failures.

Figure 15 PonyProg2000 Work Environment

 4-30

In order for PonyProg2000 to talk to the microcontroller on the STK200

development board, the former has to be configured accordingly. In Figure 16

below the Interface Setup window is displayed with the options required for the

STK200 to function properly when a programming operation is requested.

Figure 16 PonyProg2000 setup options for STK200

After having configured the programming interface that PonyProg2000 will

communicate with, it is important to select the target device used on the

STK200 development board. This step must not be overlooked. The

programming algorithm of PonyProg2000 needs to know the exact device to

program in order to generate the correct timing and control sequences for the

Intel Hex file to be successfully downloaded to the device. The device selection

is easily performed by selecting the correct one from the list as seen in Figure

17. After this procedure has finished, another important step is to configure the

microcontroller with the programming of the configuration bits as in Figure 18.

CKDIV8 needs to have a value of ‘0’ to disable the internal prescaller and

prevent the microcontroller from running at 1/8 of the external clock frequency.

 4-31

Figure 17 Setting up for use with the target microcontroller

Figure 18 Settings for Configuration and Security bits of the

microcontroller

 4-32

4 .2 .2 . M ic r o c on t r o lle r F ir m w a r e C o d e E x p la in e d

The finalised firmware code makes use of all internal memory facilities of the

microcontroller. The program memory also accommodates numeric and string

constants as well as default values for configuration parameters. The data

memory is heavily used for local function variables, global variables, and Tx/Rx

buffers for both the serial and Ethernet communication ports. The non-volatile

EEPROM memory is used to store operation parameters such as socket

information, device configuration, etc. This information is kept in place even

when the device is supplied with power, and so they can be recalled at any

time without data loss.

The on-chip serial port is configured to work at a baud rate of 38.4kbaud,

with data frames of 8bits, 1 stop bit and no parity bit. The parallel address/data

bus used to connect the IIM7010A module is configured for operation with no

wait-states to increase data transfer rates. The 16bit Timer/Counter T1 is

programmed to provide an internal interrupt-generating clock with a period of

10ms using a prescalled input clock of the external crystal. This periodic

interrupt is used at various points in the code to implement time-out counters

or fixed time delays. The two external interrupt sources of the microcontroller,

INT0 and INT1 are used for connection to the interrupt output of the IIM7010A

module and as a wake-up signal when the device is in power down mode,

respectively. The microcontroller will enter power down mode when the

appropriate command has been received and by doing so, its power

requirements will fall at extremely low levels.

 4-33

As mentioned in paragraph 3.1.2, most of the software code required to use

the TCP/IP stack module had been already provided by the manufacturing

company. Though the entire collection of lines of code was written in C for the

8051 microcontroller, with a few minor modifications it became possible to use

with the AVR-GCC compiler (Ref. [27]). This action greatly reduced the amount

of development time that would be required had the drivers’ code been written

by the author from scratch.

Due to the simplicity of communications requirements on the

Internet/Ethernet side, one socket channel is sufficient. As specifications

dictate, there can be only one data connection path originating from the field

station and terminating at the central server. When the designed software is

executed making use of its full functions, both TCP and UDP sockets are used,

however not simultaneously.

Figure 19 Protocol Stack on device Hardware & Software

TCP datagrams are used for normal data exchange between the field station

and the central server. TCP is selected as the transport layer protocol because

of its connection-oriented approach of communication links. Each datagram

 4-34

communicated is acknowledged on the receiver and if there is loss or corruption

of datagrams, then re-transmission of packets is performed. Therefore, data

integrity is fortified and in combination with even a simplistic session layer

protocol then it can be said that the data exchange is always error-free.

For the device to enter data-transfer mode, a computer is required to be

listening to the TCP port that the device will attempt to connect. The device

acts as a client and the computer as the server. The server can receive

connections from many field stations simultaneously and process the incoming

data immediately since all modern operating systems support multi-threading or

multi-tasking applications.

UDP datagrams are used for querying the DNS server when the field station’s

software requests the resolution of a hostname to its IPv4 network address.

Figure 20 DNS query and response scheme

The DNS query operation is not performed auto-magically, but a series of

steps is required. First, the query message must be generated and for that, the

remote host’s name is required. Next, the query message is encapsulated in a

UDP datagram and sent to the DNS server using its IPv4 address. When the

DNS server has performed its internal operations, it will respond to the device

with either a list of one or more hostnames and their IPv4 addresses, or an

error message indicating that the hostname could not be resolved. The

 4-35

response of the DNS server will be encapsulated in a UDP datagram. For more

information on the DNS protocol, see Ref. [14].

ICMP and ARP are internally used respectively to reply to ECHO packets and

resolve the MAC address on the local network of the destination IP address. No

access to these protocols is possible through the module’s drivers.

 4-36

4 .2 .3 . C o m m un ic a t io n C o n t r o l P r o t o c o l

 Definitions

On the following pages, some terms will be used very often and for reasons

of clarity are explained here.

AT command: “A command that forms part of a Hayes modem
control language”.

 Byte Value

Term Description Hexadecimal Decimal

<CR> Carriage Return 0D 13

<LF> Line Feed 0A 10

_ Blank Space 20 32

 GPRS AT Commands

Since the Ethernet does not provide many of the services and control

procedures that the GPRS network has, many of the following commands that

will be analysed have no effect on the operation of the device when being

received for execution. Instead, the device responds in a predefined manner to

these commands to preserve compatibility with GPRS modems.

The original set of AT commands to implement was drawn by Mr. Grigoris

Koulouras, the PhD student developing the data acquisition equipment for the

field stations. The document provided by Mr. Koulouras is also included in the

appendix as a proof of acknowledging his work in this part of the project. Parts

of his work were reproduced in the following pages. Wherever necessary

corrections and alterations have been made to reflect the way things work with

the device being developed in this project in a more accurate manner.

 4-37

Command Syntax: AT
Command Valid Responses
AT

Note: Check if device is present on the serial
port.

<CR><LF>
OK
<CR><LF>

Note: Device is present and waiting for
command.

Command Syntax: ATE
Command Valid Responses
ATE0
Note: Turns off local character echo.

ATE1
Note: Turns on local character echo.

<CR><LF>
OK
<CR><LF>

Note: Command has been successfully
processed.

Command Syntax: AT+IPR
Command Valid Responses
AT+IPR?

Note: Request for the current DTE-DCE baud
rate.

<CR><LF>
+IPR:_<rate>
<CR><LF>
OK
<CR><LF>

Note: Returns the currently configured baud
rate of the serial port. Always returns 38400.

AT+IPR=?

Note: Request for the allowed DTE-DCE
baud rates to use.

<CR><LF>
+IPR:_(38400)
<CR><LF>
OK
<CR><LF>

Note: Returns the allowed baud rate of the
serial port. Always returns 38400.

AT+IPR=<rate>

Note: Request to change the current DTE-
DCE baud rate.

<CR><LF>
OK
<CR><LF>

Note: Dummy command. Always returns OK,
but no change is performed on the baud rate
of the DTE-DCE link.

 4-38

Command Syntax: AT+CMEE
Command Valid Responses
AT+CMEE?

Note: Requests the currently configured
extended error report mode.

<CR><LF>
+CMEE:_<mode>
<CR><LF>
OK
<CR><LF>

Note 1: Returns the current error report mode.
0: No extended error report
1: Extended error report in numeric format
2: Extended error report in verbose format
Note 2: Dummy command. Always returns mode=2
(+CMEE: 2).

AT+CMEE=?

Note: Requests the currently allowed
extended error report modes of operation.

<CR><LF>
+CMEE:_ 0,1,2
<CR><LF>
OK
<CR><LF>

Note 1: Returns the allowed error report mode.
Note 2: Dummy command. Always returns mode=2
(+CMEE:_2).

AT+CMEE=<mode>

Note: Request to change the currently
allowable extended error report mode
configuration to the one indicated by the
<mode> value.
0: No extended error report
1: Extended error report in numeric format
2: Extended error report in verbose format

<CR><LF>
OK
<CR><LF>

Note 1: Response indicates that the command has
been successfully processed.
Note 2: Dummy command. Always operating in
mode 2 (verbose mode).

Command Syntax: AT+CPIN
Command Valid Responses
AT+CPIN?

Note: Requests the current PIN status.

<CR><LF>
+CPIN:_<status>
<CR><LF>
OK
<CR><LF>

Note 1: Returns the current PIN status.
Note 2: Dummy command. Status always returns
the string READY to indicate that a valid PIN has
already been provided and no further action is
needed to set it by software.

AT+CPIN=xxxx

Note: Command to enter the 4-digit PIN
code of the SIM Card to gain access to its
contents and services.

<CR><LF>
OK
<CR><LF>

Note: Dummy command. Always returns an OK
message to indicate that the PIN provided is
correct. No actual SIM card is used in the device
hence this command has no effect and is used for
compatibility reasons.

 4-39

Command Syntax: AT+CREG
Command Valid Responses
AT+CREG?

Note: Requests the current network
registration status.

<CR><LF>
+CREG:_<mode>,<status>
<CR><LF>
OK
<CR><LF>

Note 1: Response parameters indicate:
<mode>

0=Disable network registration unsolicited result
code.

1=Enable network registration unsolicited result
code.

2=Enable network registration unsolicited result
code with network.

<status>
0=Not registered, Mobile Equipment is not

currently searching a new operator to
register to

1=Registered to home network
2=Not registered but Mobile Equipment is

searching a new operator to register to
3=Registration denied
4=unknown
5=Registered to roaming network

Note 3: Dummy command response. No
registration is required for the device. Status always
returns the string +CREG:_0,1 to indicate that it is
registered to the home network operator and
connectivity is available.

AT+CREG=<mode>

<mode>

0=Disable network registration unsolicited
result code.

1=Enable network registration unsolicited
result code.

2=Enable network registration unsolicited
result code with network.

Note: Command to set the network
registration report.

<CR><LF>
OK
<CR><LF>

Note: Dummy command. Always returns an OK
message to indicate that the network registration
report setting has been accepted. Command has no
effect on the operation of the device. No
registration to a mobile network is required, and is
used for compatibility reasons.

 4-40

Command Syntax: AT+COPS
Command Valid Responses
AT+COPS?

Note: Requests the current network operator
selection.

<CR><LF>
+COPS:_<mode>,<format>,<oper>
<CR><LF>
OK
<CR><LF>

Note 1: Response parameters indicate:
<mode>

0=Automatic choice
1=Manual choice
2=Set only format

<format>
0=Alphanumeric max length 16digits
1=Alphanumeric short form
2=Numeric 5 digits [Country code (3) + Network

code (2)]
<oper>

Network operator in the format defined by the
<format> parameter.

Note 2: Dummy command response. No actual
mobile network connection is available. Command
always returns the string:
 +COPS: 0,0,”GR PKENT79”

Command Syntax: AT+CSQ
Command Valid Responses
AT+CSQ?

Note: Requests a signal quality measure-
ment.

<CR><LF>
+CSQ=<rssi>,<ber>
<CR><LF>
OK
<CR><LF>

Note 1: Response parameters indicate:
<rssi>
Received signal strength indication

0=113dBm or less
1=111dBm
2..30=109dBm…53dBm /2dBm per step
31=51dBm or greater
99=unknown or not detectable

<ber>
Bit error rate %

0=less than 0.2%
1=0.2%-0.4%
2=0.4%-0.8%
3=0.8%-1.6%
4=1.6%-3.2%
5=3.2%-6.4%
7=more than 12.8%
99=unknown or not detectable

Note 2: Dummy command response. No actual
radio signal is measured. Command always returns
the string: +CSQ=15,0

 4-41

Command Syntax: AT&K
Command Valid Responses
AT&K<mode>

<mode>

0=Disabled
1=only CTS active.
2=XON/XOFF.
3=RTS/CTS.

Note: Controls the RS-232 flow control
behavior.

Example: AT&K0

<CR><LF>
OK
<CR><LF>

Note: Dummy command. Result is always OK but
no change in the flow control is performed.

Command Syntax: AT#SHDN
Command Valid Responses
AT#SHDN

Note: Command to shutdown the device.

<CR><LF>
OK
<CR><LF>

Note: After the device responds with the OK
message, the microcontroller enters power down
mode and no further communication is possible. To
re-activate the device, the INT1 pin of the
microcontroller must be brought to logic ‘0’. The
device will wake after 500ms.

Command Syntax: AT#SKTRST
Command Valid Responses
AT#SKTRST

<socket>
User name=none
Password=none
Packet size=300
Socket inactivity time out=30 (30sec)
Data sending time out=10 (1sec)
Socket type=0 (TCP)
Remote port=3333

Note: Command to reset socket parameters
to their uninitialised values.

<CR><LF>
OK
<CR><LF>

Note: Socket parameters after reset are saved in
the non-volatile memory.

 4-42

Command Syntax: AT#USERID
Command Valid Responses
AT#USERID?

Note: Request to return the current value of
the USERID parameter.

<CR><LF>
#USERID:_“user_name”
<CR><LF>
OK
<CR><LF>

Note: Returns the current value of the USERID
parameter.

AT#USERID=?

Note: Request to return the max length of
the USERID parameter.

<CR><LF>
#USERID:_(15)
<CR><LF>
OK
<CR><LF>

Note: Returns the max length of the USERID
parameter

AT#USERID=”user_name”

Note: Command to set the value of the
USERID parameter.

<CR><LF>
OK
<CR><LF>

Note: The USERID parameter is stored in volatile
memory. To store it in non-volatile memory, use
the AT#SKTSAV command.

Command Syntax: AT#PASSW
Command Valid Responses
AT#PASSW=?

Note: Request to return the max length of
the PASSW parameter.

<CR><LF>
#PASSW:_(15)
<CR><LF>
OK
<CR><LF>

Note: Returns the max length of the PASSW
parameter

AT#PASSW=”secret_code”

Note: Command to set the value of the
PASSW parameter.

<CR><LF>
OK
<CR><LF>

Note: The PASSW parameter is stored in volatile
memory. To store it in non-volatile memory, use
the AT#SKTSAV command.

 4-43

Command Syntax: AT+CGDCONT
Command Valid Responses
AT+CGDCONT?

Note: Request to return the PDF context.

<CR><LF>
#CGDCONT:_<cid>,<PDP_type>,
<APN>,<PDP_addr>,<d_comp>,
<h_comp>
<CR><LF>
OK
<CR><LF>

Note 1: Returns the PDF context.
<cid> (PDF Context Identifier)

A numeric parameter that specifies a particular
PDF context definition.

<PDP_type> (Packet Data Protocol type)
A string parameter which specifies the type of
packet data protocol:
“IP”=Internet Protocol
“PPP”=Point to Point Protocol

<APN> (Access Point Name)
A string parameter which is a logical name that is
used to select the GGSN or the external packet
data network.

<PDP_addr>
A string parameter that identifies the terminal in the
address space applicable to the PDF.
<d_comp>

A numeric parameter that controls the PDF data
compression.
0=Off
1=On

<h_comp>
A numeric parameter that controls the PDF
header compression.
0=Off
1=On

Note 2: Dummy command. Information returned has
no effect on the operation of the device. The value of
the <APN> parameter returned is taken from the
device’s memory as set by the AT+CGDCONT=
command. The value of the <PDP_addr> parameter is
the IPv4 address of the device. The response will have
a format of:
#CGDCONT: 0,”IP”,”<access point>”,”<local IP>”,0,0

Example: #CGDCONT: 0,”IP”,”lan2”,”192.168.0.2”,0,0

AT+CGDCONT=<cid>,
<PDP_type>,<APN>,
<PDP_addr>,<d_comp>,
<h_comp>

Note: Command to define the PDF
context.

Example:
AT#CGDCONT=0,”IP”,”lan2”,”192.168.0.2”,0,0

<CR><LF>
OK
<CR><LF>

Note: Dummy command. Execution of this command
will only change the IPv4 address of the device and
set the access point name on the device’s volatile
memory. The access point name has no effect on the
operation of the device.

 4-44

Command Syntax: AT#PKTSZ
Command Valid Responses
AT#PKTSZ?

Note: Request to return the current packet
size parameter in bytes.

<CR><LF>
#PKTSZ: <packet size>
<CR><LF>
OK
<CR><LF>

Note: Returns the current packet size parameter in
bytes.
Example: #PKTSZ: 512

AT#PKTSZ=?

Note: Request to return the valid values of
the packet size parameter.

<CR><LF>
#PKTSZ: (0,1-512)
<CR><LF>
OK
<CR><LF>

Note: Returns the valid values of the packet size
parameter

AT#PKTSZ=<packet size>

<packet size>

0=automatically chosen by the device
(not supported)
1-512=packet size in bytes

Note: Command to set the value of the
packet size parameter in bytes.

<CR><LF>
OK
<CR><LF>

Note: The PKTSZ parameter is stored in volatile
memory. To store it in non-volatile memory, use
the AT#SKTSAV command.

 4-45

Command Syntax: AT#SKTTO
Command Valid Responses
AT#SKTTO?

Note: Requests the current value of the
socket time out interval in seconds.

<CR><LF>
#SKTTO: <time>
<CR><LF>
OK
<CR><LF>

Note: Returns the current value of the socket time
out interval in seconds.
Example: #SKTTO: 30

AT#SKTTO=?

Note: Request to return the valid values of
the socket time out interval in seconds.

<CR><LF>
#SKTTO: (0,1-65535)
<CR><LF>
OK
<CR><LF>

Note: Returns the valid values of the socket time
out interval in seconds

AT#SKTTO=<time>

<time>

0=No time out. Wait until the socket is
closed by the other end node.
1-65535=time out interval in seconds

Note: Command to set the value of the
socket time out interval in seconds. After
socket inactivity of this interval, the socket is
automatically closed.

<CR><LF>
OK
<CR><LF>

Note: The SKTTO parameter is stored in volatile
memory. To store it in non-volatile memory, use
the AT#SKTSAV command.

 4-46

Command Syntax: AT#DSTO
Command Valid Responses
AT#DSTO?

Note: Requests the current value of the data
send time out interval in hundreds of
milliseconds.

<CR><LF>
#DSTO: <time>
<CR><LF>
OK
<CR><LF>

Note: Returns the current value of the data send
time out interval in hundreds of milliseconds.
Example: #DSTO: 30

AT#DSTO=?

Note: Request to return the valid values of
the data send time out parameter in
hundreds of milliseconds.

<CR><LF>
#DSTO: (0,1-255)
<CR><LF>
OK
<CR><LF>

Note: Returns the valid values of the data send
time out interval in hundreds of milliseconds

AT#DSTO=<time>

<time>

0=No time out. Wait until the data packet
is full before sending it.
1-255=time out interval in hundreds of
milliseconds

Note: Command to set the value of the data
send time out interval in hundreds of
milliseconds. If no new data have been
added to the data packet for this amount of
time, the packet is send without waiting to
be full.
Example AT#DSTO=235 (time out 23.5sec)

<CR><LF>
OK
<CR><LF>

Note: The DSTO parameter is stored in volatile
memory. To store it in non-volatile memory, use
the AT#SKTSAV command.

Command Syntax: AT#QDNS
Command Valid Responses

<CR><LF>
#QDNS=”<hostname>”,<ip_address>
<CR><LF>
OK
<CR><LF>

Note: Hostname has been resolved by the DNS Server
and its IPv4 address returned.
Example: #QDNS=”mprolab.teipir.gr”,143.233.176.089

AT#QDNS=”<hostname>”

Note: Command to perform a DNS
query on the provided hostname.

Example: AT#QDNS=”mprolab.teipir.gr”

<CR><LF>
#QDNS=”<hostname>”,NOT_SOLVED
<CR><LF>
OK
<CR><LF>

Note: Hostname could not be resolved by the DNS
Server.
Example: #QDNS=”electra2.teipir.gr”,NOT_SOLVED

 4-47

Command Syntax: AT#SKTSET
Command Valid Responses
AT#SKTSET?

Note: Requests the current value of the socket
parameters <socket type>, <remote port>,
<remote address>

<CR><LF>
#SKTSET:_<type>,<port>,<addr>
<CR><LF>
OK
<CR><LF>

Note 1: Returns the current value of the socket
parameters <socket type>, <remote port>,
<remote address>
Note 2: Socket type is always set to 0 for use
with TCP socket connections.
Example: #SKTSET:_0,3333,”143.233.176.089”

AT#SKTSET=?

Note: Request to return the allowed values of
the socket parameters.

<CR><LF>
#SKTSET: (0-1),(0-65535)
<CR><LF>
OK
<CR><LF>

Note 1: Returns the allowed values for the socket
parameters <socket type>, <remote port>
Note 2: Socket type is a dummy value since it is
always read as 0 allowing only TCP sockets.

AT#SKTSET=<type>,<port>,<addr>

<type>

0=TCP socket.
1=UDP socket.

<port>
1-65535=TCP port number to connect to.

<addr>
IPv4 address in dotted-decimal notation.

Note: Command to set the value of the socket
parameters on the device.

<CR><LF>
OK
<CR><LF>

Note 1: The socket parameters are stored in
volatile memory. To store them in non-volatile
memory, use the AT#SKTSAV command.
Note 2: The socket type is always TCP=0 and any
attempt to set it to another value will have no
effect.
Example: AT#SKTSET=0,1234,”143.233.176.89”

 4-48

Command Syntax: AT#SKTSAV
Command Valid Responses
AT#SKTSAV

Socket parameters:
User name
Password
Packet size
Socket inactivity time out
Data sending time out
Socket type
Remote port

Note: Command to store all currently set
socket parameters in the non-volatile
memory of the device.

<CR><LF>
OK
<CR><LF>

Note: Socket parameters have been stored in the
device’s non-volatile memory.

Command Syntax: AT#SKTOP
Command Valid Responses

<CR><LF>
CONNECT
<CR><LF>

Note: Socket connection has been established.
After this message has been returned, the device
enters the data exchange mode and acts as a
transparent tunnel between the serial port and the
TCP socket.

AT#SKTOP

Note: Command to establish a socket
connection to a remote listening port. The
device attempts to connect to the IP address
and TCP port of the host given by the
AT#SKTSET command.

Otherwise,

<CR><LF>
NO CARRIER
<CR><LF>

Note: A socket connection cannot be established
with the remote host. The error message is
returned and the device remains in command
mode.

Command Syntax: +++
Command Valid Responses
+++

Note: Character sequence to force a socket
close. When this sequence of characters is
encountered in the data stream the device
will transmit the data it has received so far
and close the socket connection. If this
sequence is an actual stream of data, then
an escape character must be inserted to
break the sequence and then removed at
the receiving station. This is done under
software control of the communicating
stations.

<CR><LF>
NO CARRIER
<CR><LF>

Note: After the socket has been closed the device
returns to command mode and can process
commands.

 4-49

 Proprietary AT Command Set Extension

The following commands are an extension to the GPRS AT command set

meant for this device only. They should be used for device configuration and

maintenance purposes.

Command Syntax: AT%CONF
Command Valid Responses
AT%CONF?

Note: Requests the device to display its
network configuration.

Command Syntax: AT%IP
Command Valid Responses
AT%IP?

Note: Requests the currently configured
IPv4 address of the device.

<CR><LF>
%IP:_<ip4_addr>
<CR><LF>
OK
<CR><LF>

Note: Returns the currently configured IPv4
address of the device.
Example: %IP:_”192.168.000.002”

AT%IP=<ip4_addr>

Note: Command to set the IPv4 address of
the device.
Example: AT%IP=”192.168.0.12”

<CR><LF>
OK
<CR><LF>

Command Syntax: AT%GW
Command Valid Responses
AT%GW?

Note: Requests the currently configured
IPv4 address of the network gateway.

<CR><LF>
%GW:_<ip4_addr>
<CR><LF>
OK
<CR><LF>

Note: Returns the currently configured IPv4
address of the network gateway.
Example: %GW:_”192.168.000.001”

AT%GW=<ip4_addr>

Note: Command to set the IPv4 address of
the network gateway.
Example: AT%GW=”192.168.0.1”

<CR><LF>
OK
<CR><LF>

 4-50

Command Syntax: AT%DNS
Command Valid Responses
AT%DNS?

Note: Requests the currently configured
IPv4 address of the network’s DNS server.

<CR><LF>
%DNS:_<ip4_addr>
<CR><LF>
OK
<CR><LF>

Note: Returns the currently configured IPv4
address of the network’s DNS server.
Example: %DNS:_”194.177.210.210”

AT%DNS=<ip4_addr>

Note: Command to set the IPv4 address of
the network’s DNS server. The DNS server is
used by the AT#QDNS command to resolve
the IPv4 address of a host’s logical name.
Example: AT%DNS=”194.177.210.210”

<CR><LF>
OK
<CR><LF>

Command Syntax: AT%SMASK
Command Valid Responses
AT%SMASK?

Note: Requests the currently configured
subnet mask of the network.

<CR><LF>
%SMASK:_<subnet _ mask>
<CR><LF>
OK
<CR><LF>

Note: Returns the currently configured subnet
mask.
Example: %SMASK:_”255.255.255.000”

AT%SMASK=<subnet_mask >

Note: Command to set the subnet mask of
the network.
Example: AT%SMASK=”255.255.255.0”

<CR><LF>
OK
<CR><LF>

Command Syntax: AT%MAC
Command Valid Responses
AT%MAC?

Note: Requests the currently configured
MAC address of the Ethernet controller.

<CR><LF>
%MAC:_<mac_addr>
<CR><LF>
OK
<CR><LF>

Note: Returns the currently configured MAC
address of the Ethernet controller.
Example: %MAC:_”00.55.DA.FC.00.00”

AT%MAC=<mac_addr>

Note: Command to set the MAC address of
the Ethernet controller.
Example: AT%MAC=”00.75.6A.3C.10.00”

<CR><LF>
OK
<CR><LF>

 4-51

4 .2 .4 . S o f t w a r e E x e c u t io n F lo w C h a r t s

Figure 21 Main Program Execution Flow Chart

 4-52

AT#SKTOP

Initialise Socket 0

Attempt Socket
Connection

Decrement Retry
Counter

Connection
Established?

YES

Wait 100msNO
Retry

Counter = 0
?

NO

Output
“NO CARRIER”

Message
YES

Exit Function

Output
“CONNECT”

Message

Set Socket & Data
Send Time Out

Counters

Character
Serially

Received
YES

Add Character to
Outgoing Data

Buffer

Are
Three Last

Chars=”+++”
?

Remove Last
Three Characters

from Buffer
YES

Send Data Buffer
over Socket

NO

Is
Send Buffer

Full ?

Send Data Buffer
over Socket

YES

Reset Socket &
Data Send Time

Out Counters

Close Socket

Flush Data Buffer

NO

Data Send
Time Out
Expired?

YES

B

NO

A

Stop Time Out
Counters

C

Socket Time
Out Expired?

NO

YES
Send Data Buffer
over Socket if not

Empty
D

D

Figure 22 Data Transfer Mode Execution Flow Chart #1/2#

 4-53

Figure 23 Data Transfer Mode Execution Flow Chart #2/2#

 4-54

AT#QDNS

Get Host Name
from Command

Buffer

Parse Host
Name for

DNS Query
Message

Create DNS
Query Message

Open Socket 0
for UDP

Communication

Send DNS Query
Message to

Configured DNS
Server

Set DNS
Response Time

Out Counter
(100ms)

Response
Time Out
Expired?

UDP
Datagram
Received?

NO

NO

Get Response
Data from IIM7010

YES

Close Socket

Parse Response

Valid DNS
Response?

Close Socket

Output
“NOT SOLVED”

Message

Exit Function

NO

Output
Resolved IP of

Host Name

Exit Function

YES

Figure 24 DNS Query Execution Flow Chart

 5-55

5 . Te s t in g a n d D e b u g g in g

Just like every hardware & software combination project, this one as well

requires some means of verification; this chapter will address the issue of

testing for accordance to the specifications set at early stages of the design. It

is essential to be able to test the device while still in the development stage to

eliminate any malfunctions that could appear after it has been installed for full

use.

5 .1 .1 . S y s t e m D e b u g g in g

System debugging is separated in two sections, those for hardware, and

software. Hardware troubleshooting experienced at the early stages of

development involved locating design and manufacturing errors in the

prototype boards of the system device. After this had completed, identifying

hidden software bugs in the code developed for the system was to be the most

tedious task, since it involves both logically and practically verifying every code

function written. When dealing with embedded systems, care needs to be taken

so that the software is optimized to make extensive yet not greedy use of the

available system resources, which are always limited.

For the development stage of the project, all of the tests and

experimentations performed on the device were carried out using the

experimental set-up shown in Figure 25.

 5-56

Figure 25 Experimental connections of the device

 System Configuration

The first step in debugging a system is to be aware of what its configuration

is. This feedback can be largely performed by using the already described AT

command set and its proprietary extensions. In Figure 26 below, the execution

of the AT%CONF command is displayed and its response can be used to verify

the configuration of the device.

Figure 26 Obtaining the device configuration

 5-57

 Run-Time Debugging

Having a serial connection to the computer increases the level of

detectability of errors. The designer can strategically insert checkpoints or

message printing function calls that verify the system status or give information

on function variables during execution. Software or hardware bugs can then be

easily traced and eliminated.

5 .1 .2 . S im u la t io n o f e x p e c t e d u s e p a t t e r n s

After having developed some functional piece of software code, there is need

to observe the system respond to traffic patterns similar to the ones expected

to appear when the project has been finalised. This will be achieved by applying

loop-back tests, where test data is sent from one interface to the other and

return data is compared to the original and transmission times measured.

Additional tests for communication breakdown and recovery will be very helpful

in gathering information to build a reliable piece of equipment. Error recovery

or at least error reporting is required to assure data integrity. Packet capturing

software techniques will be used to analyse packets being sent and received

between the interface device and the server station.

 5-58

 Domain Name Service Query

As already mentioned the device has the ability of resolving hostnames to

their IPv4 addresses. To make this happen an external DNS server must be

present. The DNS server can be configured using the AT%DNS command.

Execution of the AT#QDNS command on Windows’ HyperTerminal as in

Figure 27 below provides a response containing the resolved IPv4 address of

the host name provided.

Figure 27 Querying the DNS server through the device

 5-59

Using network monitoring tools such as WinDump (Ref. [29]) (execute

“windump -Xvvvs 256 udp port 53”) to monitor network packets exchanged

with a real DNS server, valuable information was extracted and programming or

protocol faults were detected and corrected. In the example shown in Figure 26

and Figure 27, the device has been requested to provide the resolved IPv4

address of the host “mprolab.teipir.gr” which is a server administrated by the

writer.

Figure 28 Windump trace of DNS query and response

 5-60

 Data Transfer Session

The most important function of the device is undoubtedly the transfer of

data from the field station to the central server. It would be unthinkable not to

test the device for this function, so this is presented in the following pages.

For our testing purposes, two programs were used, PortPeeker a network

port monitor running under windows and a serial terminal emulation program.

Any serial terminal application is acceptable for our experimentations.

PortPeeker (Ref. [28]) will monitor control and data packets exchanged on a

specified network interface and a TCP or UDP port.

Figure 29 PortPeeker Application Window

To use PortPeeker, it must first be configured to monitor the port that the

device will attempt to connect by default. For testing scenarios, this is TCP port

3000 and the listening interface of the personal computer is 192.168.0.1. The

device is set to have the IPv4 address 192.168.0.2. PortPeeker is configured by

pressing the Configuration button in the main application window (Figure 29).

The window of Figure 30 will appear and network monitor parameters were set

as displayed.

 5-61

Figure 30 PortPeeker Configuration Window

The settings on this window involve two message spaces. The first one

contains a message that will be sent to the device when it will establish a

socket connection with PortPeeker. The second message will be sent as a

confirmation message to the device when any piece of data is received from it.

 5-62

Figure 31 Terminal Screen Capture

From Figure 31 above, the reader can observe the execution of two

commands; the first command (AT#SKTSET?) will display the currently

configured socket parameters. The second command will attempt to establish a

socket connection with PortPeeker which is listening on TCP port 3000.

As seen in Figure 31 above and Figure 32 below, when the connection is

established the computer will send its, somewhat cute, user-defined

“connection established” message. Typing some messages to emulate incoming

serial data on the device, when the data send time out expires, the message is

sent to the computer. The computer then responds with its user-defined “data

received” message.

The connection is finally closed from the side of the device by typing the

socket termination string “+++”.

 5-63

Figure 32 PortPeeker Window Capture of Data Transfer

The captured data transfer activity can also be found in clear-text form in the

appendix.

 5-64

5 .1 .3 . In - f ie ld t e s t in g

Plans for the future involve testing the system out in the field. This requires

that both the data acquisition equipment of the field station and the developed

communication device of this project shall be placed in proper installations for

carrying out real experiments. The device will be monitored and any deviation

from the expected work plan needs to be processed and possible sources of

problems in hardware or software be eliminated.

 6-65

6 . C o n c lu s io n s

Concluding this project, we take a step back and consider how it started and

what has been completed. The entire specifications list has been successfully

implemented and our aims reached.

The wide range of knowledge obtained from the taught modules of this

course and their respective laboratory sessions has acted catalytically in favor

of finishing this project. The device in question has been designed and

prototype printed circuit boards produced to a fully functional level. The

prototype device has been tested and verified in laboratory conditions while

testing at a real field station remains as planned not to happen before the

deadline of this project.

Managing such a project, although difficult at some points, it proved to be a

very interesting and invaluable experience. Much knowledge in the field of

computer networks and embedded systems programming has been gained.

Sources of this gain have been the logical reflections occurring at every

moment, as many aspects of the problems being faced with needed to be

considered in order to decide on the best possible solution.

 8-66

7 . F u t u r e W o r k

Future work on this project might involve the support for new firmware

releases or hardware additions to allow expansion of the seismological research

project. At this moment, there is no knowledge on potential future changes.

Requirements and emerging ideas are the fuel to keep the fire of this project

burning.

8 . P e r s o n a l T h o u g h t s

Having finished this project, I feel more confident about my abilities in

handling projects of such magnitude in real life.

During both research and development periods, I had the opportunity to

study on real-time embedded systems and expand my knowledge in

microcontroller and microprocessor systems design, which is my main field of

interest. In addition, it was possible to apply engineering knowledge on a very

important field of computer networks.

In conclusion, as expected, this project proved to be the most exciting and

challenging part of the MSc course.

 9-67

9 . P r o je c t M a n a g e m e n t

For this project to achieve its aims the entire period required to complete this

project had to be divided in three stages, Research, Design & Development,

and Testing.

Research:

o Study the TCP/IP protocol suite.
o Find out what other solutions are available currently on the market.
o Draw the primary system specifications.
o Set the achievable goals according to time and budget available for

the project.
o Find, compare, and decide which parts should be used for the system.

Design & Development:

o Study datasheets of parts to be used.
o Draw hardware interconnection diagrams according to specifications.
o Produce prototype boards.
o Produce software code.

Testing

o Debug code and system using simulation scenarios of expected
working conditions.

The above stages are better observed in the Gantt chart for this project

given in the appendix.

 10-68

 10-69

 10-70

1 0 . B ib lio g r a p h y

[1] Freeman, Roger L. – Telecommunication System Engineering. – 3rd ed. –
New York; John Wiley & Sons, Inc, 1996. – ISBN: 0471133027

[2] Green, D. C. (Derek Charles), 1931-. - Data communication. - Harlow:

Longman Scientific & Technical, 1991. – ISBN: 0582060052

[3] Halsall, Fred. - Data communications, computer networks, and open

systems. - 3rd ed. - Wokingham: Addison-Wesley, 1992. – ISBN:
0201565064

[4] Seidler, J. - Principles of computer communication network design /

translation editor R.J. - Chichester: Horwood, 1983. - (Ellis Horwood series
in electrical and electronic engineering). – ISBN: 0853122415

[5] Stallings, William. - Data and computer communications. - 3rd ed. - New

York; Oxford: Maxwell Macmillan, 1991. – ISBN: 0024154547

[6] Donahoo, M., Calvert K., - TCP/IP Sockets in C: Practical Guide for

Programmers (The Practical Guides Series) - Morgan Kaufmann, 2000. -
ISBN: 1558608265

 11-71

1 1 . R e f e r e n c e s & O t h e r D o c u m e n t s

1 1 .1 . R e a d y-t o -U s e S o lu t ions

[1] Precidia Technologies
URL: http://www.precidia.com/products/product1.html
Last Accessed: 01/02/2004

[2] ARC Electronics
URL: http://www.arcelect.com/LS-101_RS232_to_TCP-
IP_ICMP_HTTP_DHCP_converter.htm
Last Accessed: 01/02/2004

[3] MOXA
URL:
http://www.moxa.com/product/Serial_Device_Servers/8_16_Port/NPort_DE_
308_303.htm
Last Accessed: 01/02/2004

[4] Arcom
URL: http://www.arcom.com/products/pcp/Gateways/ESS/ESS1.htm
Last Accessed: 01/02/2004

[5] Telecom Design Communications Ltd.
URL: http://www.tdc.co.uk/modems/modem_tcpip_connect1.htm
Last Accessed: 01/02/2004

[6] Kanda Systems
URL: https://www.kanda.com/s_embedded.html
Last Accessed: 01/02/2004

[7] VOX Technologies
URL: http://www.voxtechnologies.com/MoxaIndex.htm
Last Accessed: 01/02/2004

 11-72

1 1 .2 . A r t ic le s & O t he r S t ud y M a t e r ia l

[8] Sensors Magazine, Article by Thomas A. Lutz: “Using TCP/IP As an
Instrument Interface”
URL: http://www.sensorsmag.com/articles/0798/tcp0798/main.shtml
Last Accessed: 01/02/2004

[9] Internet Society (ISOC) All About The Internet: History of the Internet
URL: http://www.isoc.org/Internet/history/
Last Accessed: 18/04/2004

[10] RFC 1180 - TCP/IP tutorial
URL: http://www.faqs.org/rfcs/rfc1180.html
Last Accessed: 18/04/2004

[11] RFC 791 - Internet Protocol
URL: http://www.faqs.org/rfcs/rfc791.html
Last Accessed: 18/04/2004

[12] RFC 793 - Transmission Control Protocol
URL: http://www.faqs.org/rfcs/rfc793.html
Last Accessed: 18/04/2004

[13] RFC 768 - User Datagram Protocol
URL: http://www.faqs.org/rfcs/rfc768.html
Last Accessed: 18/04/2004

[14] DNS Related RFCs (Request For Comments): rfc1035, rfc2929.
URL #1: http://www.faqs.org/rfcs/rfc1035.html
URL #2: http://www.faqs.org/rfcs/rfc2929.html
Last Accessed: 01/04/2004

[15] Thomas P. Kelliher, Carnegie Mellon (US), “Introduction to Socket API”
URL: http://www.andrew.cmu.edu/~kevinm/sockets.html
Last Accessed: 18/04/2004

 11-73

[16] Brian "Beej" Hall – “Beej's Guide to Network Programming”
URL: http://www.ecst.csuchico.edu/~beej/guide/net/
Last Accessed: 18/04/2004

[17] Lakeview Research: “Serial Links using RS-232 and RS-485”
URL: http://www.lvr.com/serport.htm
Last Accessed: 18/04/2004

[18] totse.com: “Practical guide to RS- 232 interfacing”
http://www.totse.com/en/technology/telecommunications/rs232.html
Last Accessed: 18/04/2004

[19] The online Industrial Ethernet Book, Article by David Evans:
“Interfacing Serial to Ethernet”
URL: http://ethernet.industrial-networking.com/articles/i11serial.asp
Last Accessed: 01/02/2004

[20] Electrotek Concepts Inc., Article: “Data Acquisition System Description”
URL: http://www.electrotek.com/DOE/diagram.htm
Last Accessed: 01/02/2004

[21] Beyond Logic, Article by Craig Peacock: “Ethernet & TCP/IP Interfaces”
URL: http://www.beyondlogic.org/etherip/ip.htm
Last Accessed: 01/02/2004

 11-74

1 1 .3 . H a r dw a r e C om p one nt s U s e d

[22] Kanda STK200 AVR Microcontroller Starter Kit
URL: https://www.kanda.com/shopnav/shop.php3?bc=direct&bw=
/browse.php3?node=30&semisupport=
Last Accessed: 18/04/2004

[23] Atmel AVR ATmega8515L
URL: http://www.atmel.com/dyn/products/product_card.asp?part_id=2007
Last Accessed: 01/02/2004

[24] Atmel AVR ATmega162L
URL: http://www.atmel.com/dyn/products/product_card.asp?part_id=2024
Last Accessed: 01/02/2004

[25] AVR Instruction Set
URL: http://www.atmel.com/dyn/resources/prod_documents/DOC0856.PDF
Last Accessed: 01/02/2004

[26] WIZnet iinchip IIM7010A
URL: http://www.iinchip.com/e_iinchip/product_module_iim7010A.htm
Last Accessed: 01/02/2004

1 1 .4 . S of t w a r e T oo ls U s e d

[27] AVR-GCC Compiler

URL: http://www.avrfreaks.net/AVRGCC/
Last Accessed: 01/02/2004

[28] PortPeeker
URL: http://www.linklogger.com/portpeeker.htm
Last Accessed: 01/04/2004

[29] WinDump: tcpdump for windows
URL: http://windump.polito.it/
Last Accessed: 01/02/2004

 12-75

1 2 . A p p e n d ix

Makefile sample
WinAVR Sample makefile written by Eric B. Weddington, Jφrg Wunsch,
et al.
Released to the Public Domain
Please read the make user manual!

Additional material for this makefile was submitted by:
Tim Henigan
Peter Fleury
Reiner Patommel
Sander Pool
Frederik Rouleau
Markus Pfaff

On command line:

make all = Make software.

make clean = Clean out built project files.

make coff = Convert ELF to AVR COFF (for use with AVR Studio 3.x
or VMLAB).

make extcoff = Convert ELF to AVR Extended COFF (for use with AVR
Studio
4.07 or greater).

make program = Download the hex file to the device, using avrdude.
Please
customize the avrdude settings below first!

make filename.s = Just compile filename.c into the assembler code
only

To rebuild project do "make clean" then "make all".

MCU name
MCU = atmega162

Output format. (can be srec, ihex, binary)
FORMAT = ihex

Target file name (without extension).
TARGET = main

Optimization level, can be [0, 1, 2, 3, s]. 0 turns off
optimization.
(Note: 3 is not always the best optimization level. See avr-libc
FAQ.)
OPT = 2

List C source files here. (C dependencies are automatically
generated.)
SRC = $(TARGET).c

 12-76

Makefile sample

If there is more than one source file, append them above, or
modify and
uncomment the following:
SRC += serial.c functions.c socket.c sockutil.c constant.c

You can also wrap lines by appending a backslash to the end of the
line:
#SRC += baz.c \
#xyzzy.c

List Assembler source files here.
Make them always end in a capital .S. Files ending in a lowercase
.s
will not be considered source files but generated files (assembler
output from the compiler), and will be deleted upon "make clean"!
Even though the DOS/Win* filesystem matches both .s and .S the
same,
it will preserve the spelling of the filenames, and gcc itself
does
care about how the name is spelled on its command-line.
ASRC =

List any extra directories to look for include files here.
Each directory must be seperated by a space.
EXTRAINCDIRS =

Optional compiler flags.
-g: generate debugging information (for GDB, or for COFF
conversion)
-O*: optimization level
-f...: tuning, see gcc manual and avr-libc documentation
-Wall...: warning level
-Wa,...: tell GCC to pass this to the assembler.
-ahlms: create assembler listing
CFLAGS = -n -g -O$(OPT) \
-funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums \
-Wall -Wstrict-prototypes \
-Wa,-adhlns=$(<:.c=.lst) \
$(patsubst %,-I%,$(EXTRAINCDIRS))

Set a "language standard" compiler flag.
Unremark just one line below to set the language standard to
use.
gnu99 = C99 + GNU extensions. See GCC manual for more
information.
#CFLAGS += -std=c89
#CFLAGS += -std=gnu89
#CFLAGS += -std=c99
CFLAGS += -std=gnu99

Optional assembler flags.
-Wa,...: tell GCC to pass this to the assembler.
-ahlms: create listing

 12-77

Makefile sample
-gstabs: have the assembler create line number information;
note that
for use in COFF files, additional information about
filenames
and function names needs to be present in the
assembler source
files -- see avr-libc docs [FIXME: not yet described
there]
ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs

Optional linker flags.
-Wl,...: tell GCC to pass this to linker.
-Map: create map file
--cref: add cross reference to map file
LDFLAGS = -Wl,-Map=$(TARGET).map,--cref

Additional libraries

Minimalistic printf version
#LDFLAGS += -Wl,-u,vfprintf -lprintf_min

Floating point printf version (requires -lm below)
#LDFLAGS += -Wl,-u,vfprintf -lprintf_flt

-lm = math library
#LDFLAGS += -lm

Programming support using avrdude. Settings and variables.

Programming hardware: alf avr910 avrisp bascom bsd
dt006 pavr picoweb pony-stk200 sp12 stk200 stk500

Type: avrdude -c ?
to get a full listing.

AVRDUDE_PROGRAMMER = stk200

programmer connected to serial device
#AVRDUDE_PORT = com1
programmer connected to parallel port
AVRDUDE_PORT = lpt1

AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex
#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep

AVRDUDE_FLAGS = -p $(MCU) -P $(AVRDUDE_PORT) -c
$(AVRDUDE_PROGRAMMER)

Uncomment the following if you want avrdude's erase cycle counter.
Note that this counter needs to be initialized first using -Yn,
see avrdude manual.
#AVRDUDE_ERASE += -y

 12-78

Makefile sample
Uncomment the following if you do /not/ wish a verification to be
performed after programming the device.
#AVRDUDE_FLAGS += -V

Increase verbosity level. Please use this when submitting bug
reports about avrdude. See
<http://savannah.nongnu.org/projects/avrdude>
to submit bug reports.
#AVRDUDE_FLAGS += -v -v

--

Define directories, if needed.
DIRAVR = c:/winavr
DIRAVRBIN = $(DIRAVR)/bin
DIRAVRUTILS = $(DIRAVR)/utils/bin
DIRINC = .
DIRLIB = $(DIRAVR)/avr/lib

Define programs and commands.
SHELL = $(DIRAVRUTILS)/sh

CC = $(DIRAVRBIN)/avr-gcc

OBJCOPY = $(DIRAVRBIN)/avr-objcopy
OBJDUMP = $(DIRAVRBIN)/avr-objdump
SIZE = $(DIRAVRBIN)/avr-size

Programming support using avrdude.
AVRDUDE = $(DIRAVRBIN)/avrdude

REMOVE = rm -f
COPY = cp

HEXSIZE = $(SIZE) --target=$(FORMAT) $(TARGET).hex
ELFSIZE = $(SIZE) -A $(TARGET).elf

Define Messages
English
MSG_ERRORS_NONE = Errors: none
MSG_BEGIN = -------- begin --------
MSG_END = -------- end --------
MSG_SIZE_BEFORE = Size before:
MSG_SIZE_AFTER = Size after:
MSG_COFF = Converting to AVR COFF:
MSG_EXTENDED_COFF = Converting to AVR Extended COFF:
MSG_FLASH = Creating load file for Flash:
MSG_EEPROM = Creating load file for EEPROM:
MSG_EXTENDED_LISTING = Creating Extended Listing:
MSG_SYMBOL_TABLE = Creating Symbol Table:
MSG_LINKING = Linking:
MSG_COMPILING = Compiling:

 12-79

Makefile sample
MSG_ASSEMBLING = Assembling:
MSG_CLEANING = Cleaning project:

Define all object files.
OBJ = $(SRC:.c=.o) $(ASRC:.S=.o)

Define all listing files.
LST = $(ASRC:.S=.lst) $(SRC:.c=.lst)

Combine all necessary flags and optional flags.
Add target processor to flags.
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)

Default target.
all: begin gccversion sizebefore $(TARGET).elf $(TARGET).hex
$(TARGET).eep \
 $(TARGET).lss $(TARGET).sym sizeafter finished end

Eye candy.
AVR Studio 3.x does not check make's exit code but relies on
the following magic strings to be generated by the compile job.
begin:
 @echo
 @echo $(MSG_BEGIN)

finished:
 @echo $(MSG_ERRORS_NONE)

end:
 @echo $(MSG_END)
 @echo

Display size of file.
sizebefore:
 @if [-f $(TARGET).elf]; then echo; echo $(MSG_SIZE_BEFORE);
$(ELFSIZE); echo; fi

sizeafter:
 @if [-f $(TARGET).elf]; then echo; echo $(MSG_SIZE_AFTER);
$(ELFSIZE); echo; fi

Display compiler version information.
gccversion :
 @$(CC) --version

Convert ELF to COFF for use in debugging / simulating in
AVR Studio or VMLAB.
COFFCONVERT=$(OBJCOPY) --debugging \

 12-80

Makefile sample
 --change-section-address .data-0x800000 \
 --change-section-address .bss-0x800000 \
 --change-section-address .noinit-0x800000 \
 --change-section-address .eeprom-0x810000

coff: $(TARGET).elf
 @echo
 @echo $(MSG_COFF) $(TARGET).cof
 $(COFFCONVERT) -O coff-avr $< $(TARGET).cof

extcoff: $(TARGET).elf
 @echo
 @echo $(MSG_EXTENDED_COFF) $(TARGET).cof
 $(COFFCONVERT) -O coff-ext-avr $< $(TARGET).cof

Program the device.
program: $(TARGET).hex $(TARGET).eep
 $(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH)
$(AVRDUDE_WRITE_EEPROM)

Create final output files (.hex, .eep) from ELF output file.
%.hex: %.elf
 @echo
 @echo $(MSG_FLASH) $@
 $(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@

%.eep: %.elf
 @echo
 @echo $(MSG_EEPROM) $@
 -$(OBJCOPY) -j .eeprom --set-section-
flags=.eeprom="alloc,load" \
 --change-section-lma .eeprom=0 -O $(FORMAT) $< $@

Create extended listing file from ELF output file.
%.lss: %.elf
 @echo
 @echo $(MSG_EXTENDED_LISTING) $@
 $(OBJDUMP) -h -S $< > $@

Create a symbol table from ELF output file.
%.sym: %.elf
 @echo
 @echo $(MSG_SYMBOL_TABLE) $@
 $(DIRAVRBIN)/avr-nm -n $< > $@

Link: create ELF output file from object files.
.SECONDARY : $(TARGET).elf
.PRECIOUS : $(OBJ)
%.elf: $(OBJ)
 @echo
 @echo $(MSG_LINKING) $@

 12-81

Makefile sample
 $(CC) $(ALL_CFLAGS) $(OBJ) --output $@ $(LDFLAGS)

Compile: create object files from C source files.
%.o : %.c
 @echo
 @echo $(MSG_COMPILING) $<
 $(CC) -c $(ALL_CFLAGS) $< -o $@

Compile: create assembler files from C source files.
%.s : %.c
 $(CC) -S $(ALL_CFLAGS) $< -o $@

Assemble: create object files from assembler source files.
%.o : %.S
 @echo
 @echo $(MSG_ASSEMBLING) $<
 $(CC) -c $(ALL_ASFLAGS) $< -o $@

Target: clean project.
clean: begin clean_list finished end

clean_list :
 @echo
 @echo $(MSG_CLEANING)
 $(REMOVE) $(TARGET).hex
 $(REMOVE) $(TARGET).eep
 $(REMOVE) $(TARGET).obj
 $(REMOVE) $(TARGET).cof
 $(REMOVE) $(TARGET).elf
 $(REMOVE) $(TARGET).map
 $(REMOVE) $(TARGET).obj
 $(REMOVE) $(TARGET).a90
 $(REMOVE) $(TARGET).sym
 $(REMOVE) $(TARGET).lnk
 $(REMOVE) $(TARGET).lss
 $(REMOVE) $(OBJ)
 $(REMOVE) $(LST)
 $(REMOVE) $(SRC:.c=.s)
 $(REMOVE) $(SRC:.c=.d)

Automatically generate C source code dependencies.
(Code originally taken from the GNU make user manual and modified
(See README.txt Credits).)

Note that this will work with sh (bash) and sed that is shipped
with WinAVR
(see the SHELL variable defined above).
This may not work with other shells or other seds.

%.d: %.c
 set -e; $(CC) -MM $(ALL_CFLAGS) $< \
 | $(DIRAVRUTILS)/sed 's,\(.*\)\.o[:]*,\1.o \1.d : ,g' > $@; \
 [-s $@] || rm -f $@

 12-82

Makefile sample

Remove the '-' if you want to see the dependency files generated.
-include $(SRC:.c=.d)

Listing of phony targets.
.PHONY : all begin finish end sizebefore sizeafter gccversion coff
extcoff \
 clean clean_list program

 12-83

Data Transfer Session Capture
TCP Connection Request
---- 13/4/2004 23:16:58.625

192.168.0.2 : 5000 TCP Connected ID = 1
---- 13/4/2004 23:16:58.625
Status Code: 0 OK
---- Data Sent
0000 0D 0A 2E 20 20 20 20 20 20 20 20 20 20 20 20 20 ...
0010 20 20 20 20 2F 5C 20 20 5C 7C 2F 20 20 2F 5C 0D /\ \|/ /\.
0020 0A 2E 20 20 20 20 20 20 20 20 20 20 20 20 20 20 ..
0030 20 20 20 7C 5C 5C 5F 3B 3D 2E 5F 2F 2F 7C 0D 0A |_;=._//|..
0040 2E 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 .
0050 20 20 20 5C 2E 22 20 20 20 22 2E 2F 0D 0A 2E 20 \." "./...
0060 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
0070 20 2F 2F 5E 5C 20 2F 5E 5C 5C 0D 0A 2E 20 20 20 //^\ /^\\...
0080 20 20 20 20 20 20 20 20 2E 27 60 60 22 2C 2F 20 .'``",/
0090 7C 30 7C 20 7C 30 7C 20 5C 2C 22 60 60 27 2E 0D |0| |0| \,"``'..
00A0 0A 2E 20 20 20 20 20 20 20 20 20 20 2F 20 20 20 .. /
00B0 2C 20 20 60 27 5C 2E 2D 2D 2D 2E 2F 27 60 20 20 , `'\.---./'`
00C0 2C 20 20 20 5C 0D 0A 2E 20 20 20 20 20 20 20 20 , \...
00D0 20 2F 60 20 20 2F 60 5C 2C 2E 22 28 20 20 20 20 /` /`\,."(
00E0 20 29 22 2E 2C 2F 60 5C 20 20 60 5C 0D 0A 2E 20)".,/`\ `\...
00F0 20 20 20 20 20 20 20 20 2F 60 20 20 20 20 20 28 /` (
0100 20 27 2E 27 2D 2E 2D 27 2E 27 20 29 20 20 20 20 '.'-.-'.')
0110 20 60 5C 0D 0A 2E 20 20 20 20 20 20 20 20 20 2F `\... /
0120 22 60 20 20 20 20 20 22 2E 5F 20 20 3A 20 20 5F "` "._ : _
0130 2E 22 20 20 20 20 20 60 22 5C 0D 0A 2E 20 20 20 ." `"\...
0140 20 20 20 20 20 20 20 60 2F 2E 27 60 22 3D 2E 2C `/.'`"=.,
0150 5F 60 60 3D 60 60 5F 2C 2E 3D 22 60 27 2E 5C 60 _``=``_,.="`'.\`
0160 0D 0A 2E 20 20 20 20 20 20 20 20 20 20 20 20 20 ...
0170 20 20 20 20 20 20 20 29 20 20 20 28 0D 0A 2E 20) (...
0180 20 20 20 20 20 20 20 20 20 53 49 4C 56 45 53 54 SILVEST
0190 45 52 20 53 54 52 49 4B 45 53 20 41 47 41 49 4E ER STRIKES AGAIN
01A0 0D 0A ..

192.168.0.2 : 5000 TCP Data In Length 19 bytes
MD5 = F11BA996A471581D638A261D761CE812
---- 13/4/2004 23:17:06.671
0000 48 45 4C 4C 4C 4C 4C 4C 4C 4C 4C 4F 4F 4F 4F 4F HELLLLLLLLLOOOOO
0010 21 21 21 !!!

---- Data Sent
0000 44 61 74 61 20 72 65 63 65 69 76 65 64 20 6F 6E Data received on
0010 20 50 43 20 73 69 64 65 0D 0A PC side..

192.168.0.2 : 5000 TCP Data In Length 20 bytes
MD5 = EF8808DC72F2C5DA0282E0512A6D14F8
---- 13/4/2004 23:17:17.968
0000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 24 THIS IS A TEST!$
0010 25 5E 26 26 %^&&

---- Data Sent
0000 44 61 74 61 20 72 65 63 65 69 76 65 64 20 6F 6E Data received on
0010 20 50 43 20 73 69 64 65 0D 0A PC side..

